The Budget Constraint

Sierra Smith

January 31, 2025

Introduction

- ▶ Basic Idea of Consumer Theory: Consumers choose the BEST bundle of goods that they can AFFORD
- ▶ We will first focus on what we mean by "afford"
- ► To identify affordability we need to know:
 - ► What goods a person is buying
 - ► The price of each good
 - ► The person's income

Notation

- \triangleright x_1 : An amount of good 1
 - ► Subscript denotes the good (1, 2, c, t, etc.)
 - ► Variable denotes the amount of the good (x, y, z, etc.)
 - ▶ e.g. If a good is cups of coffee, then $x_c = 3$ and $y_c = 5$ represent 3 and 5 cups of coffee respectively
- \triangleright p_1 : Price of good 1
 - ► Subscript denotes the good (1, 2, c, t, etc.)
 - p denotes the price of the good
 - ▶ e.g. If tea costs \$2 a cup, then $p_t = 2$
- ▶ m: The amount of money a person has to spend (Income)
 - ightharpoonup e.g. If a person has \$100 to spend, then m=100

Definitions

- **Consumption Bundle** (x_1, x_2) : A list of two numbers that indicate how much of good 1 and good 2 a person chooses to consume
 - Sometimes denoted by a capital letter

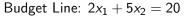
$$X = (x_1, x_2) \text{ or } A = (y_1, y_2)$$

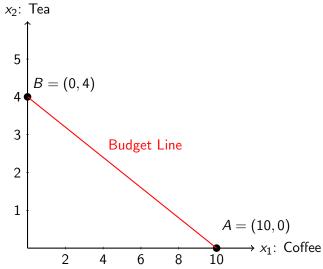
- ▶ e.g. If good 1 is coffee and good 2 is tea, then (3,5) represents a bundle of 3 coffees and 5 teas
- Budget Constraint: Equation of all possible combinations of consumption bundles a person can afford, given prices and income
 - ▶ $p_1x_1 + p_2x_2 \le m$
 - ► IOW: The total cost of the goods cannot exceed your income
 - ► Hence we are **constrained** by our **budget**
 - ▶ e.g. If you have \$20, $p_1 = 2$, and $p_2 = 5$, then your budget constraint is $2x_1 + 5x_2 \le 20$

Definitions

- ► Budget Set: Set of all affordable consumption bundles, given prices and income
 - e.g. Budget Constraint: $2x_1 + 5x_2 \le 20$
 - ▶ A = (1,1), B = (5,0), C = (0,4), D = (5,2) are some consumption bundles in this budget set
 - ► E = (5,3), F = (0,5) are not bundles in this set; we can't afford them
- Budget Line: The set of bundles that exhaust the income, given prices
 - $p_1x_1 + p_2x_2 = m$
 - ▶ e.g. Bundles C and D are on the budget line, but A and B are not

Example: Graphing the Budget Constraint

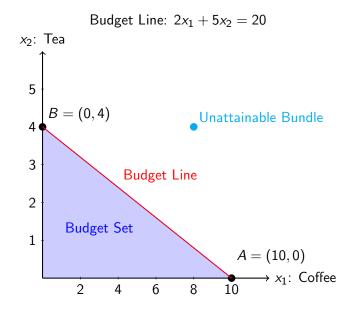

- ▶ Coffee (x_1) costs \$2, Tea (x_2) costs \$5, and our income is \$20
- ▶ Budget Line: $2x_1 + 5x_2 = 20$
- Let's find the intercepts:


Let
$$x_2 = 0$$

 $2x_1 + 5(0) = 20$
 $2x_1 = 20$ (Simplify)
 $x_1 = 10$ (Divide by 2)
One point is A=(10,0)

Let
$$x_1 = 0$$

 $2(0) + 5x_2 = 20$
 $5x_2 = 20$ (Simplify)
 $x_2 = 4$ (Divide by 5)
Another point is B=(0,4)


▶ We have two points, so we can plot and connect them

Example: Graphing the Budget Constraint

Example: Graphing the Budget Constraint

How To Graph The Budget Line

- 1. Write down the budget Line
 - $p_1x_1 + p_2x_2 = m$
- 2. Plug in p_1 , p_2 , and m
- 3. Solve for the intercepts
 - ▶ Plug in $x_1 = 0$ and solve for x_2
 - ▶ Repeat with $x_2 = 0$
- 4. Plot the two intercepts: $(0, x_2)$, $(x_1, 0)$
- 5. Connect the two points

- All the points on and below the budget line represent the Budget
 Set
- All the points above the budget line are unattainable

Opportunity Cost

- ► Opportunity Cost: How much of a good a consumer will give up, to get one more unit of the other good
 - ► It is negative because the **opportunity** to consume more of a good will **cost** you some of the other good
- ▶ Budget Line: $2x_1 + 5x_2 = 20$
 - ightharpoonup Let's solve for x_2

$$5x_2 = 20 - 2x_1$$
 (Subtract $2x_1$ from both sides) $x_2 = \frac{20}{5} - \frac{2}{5}x_1$ (Divide both sides by 5) $x_2 = -\frac{2}{5}x_1 + 4$ (Rearrange and simplify)

- ► The opportunity cost of consuming 1 extra cup of coffee is $\frac{2}{5}$ cups of tea
- ▶ If you instead solved for x_1 , the opportunity cost of consuming 1 extra cup of tea would be 2.5 cups of coffee

Opportunity Cost

- Opportunity cost of consuming an extra unit is also just the price ratio of the goods
- ▶ Budget Line: $p_1x_1 + p_2x_2 = m$
- ▶ Let's rearrange this to solve for x_2

$$p_1x_1 + p_2x_2 = m$$

$$p_2x_2 = m - p_1x_1 \text{ (Subtract } p_1x_1 \text{ from both sides)}$$

$$x_2 = \frac{m}{p_2} - \frac{p_1}{p_2}x_1 \text{ (Divide both sides by } p_2)$$

$$x_2 = -\frac{p_1}{p_2}x_1 + \frac{m}{p_2} \text{ (Rearrange)}$$

- ▶ Opportunity cost of consuming an extra unit of x_1 : $-\frac{p_1}{p_2}$
- ▶ Opportunity cost of consuming an extra unit of x_2 : $-\frac{p_2}{p_1}$

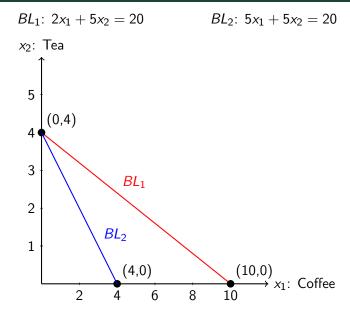
What Affects the Budget Line?

The affordability of a bundle of goods depends on a consumer's income and the prices of the goods

▶ Income

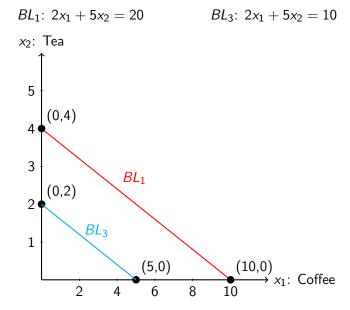
When income increases (decreases) and prices stay the same, the budget line shifts outward (inward) and the slope remains the same

Prices

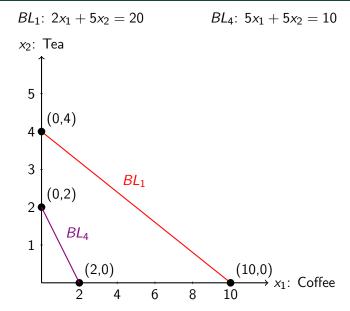

- ▶ If p_1 increases (decreases) while holding p_2 and income fixed...
 - \triangleright x_2 intercept does not change: $(0, x_2)$
 - ► Budget line/slope becomes steeper (flatter)
 - ▶ If it is p_2 that changes, it has the opposite effect
- \triangleright p_1 and p_2 both increase (decrease) while income is fixed
 - Budget line shifts inward (outward)
 - ► Slope depends on the ratio of the changes

► Income and Price

Depends...


$$p_1 = 2$$
, $p_2 = 5$, $m = 20$

- ▶ Suppose Brazil experiences a freak frost that damages many coffee groves. Because of this, the price of coffee (p_1) increases to \$5.
- $ightharpoonup p'_1 = 5, p_2 = 5, m = 20$
- New Budget Line: $5x_1 + 5x_2 = 20$
- New Intercept(s): (0,4) and (4,0)


$$p_1 = 2$$
, $p_2 = 5$, $m = 20$

- ► The frost never happened, but you parked in ramp 6 without paying and got a \$10 ticket that comes out of your income
- $ightharpoonup p_1 = 2, p_2 = 5, m' = 10$
- ► New Budget Line: $2x_1 + 5x_2 = 10$
- New Intercepts: (0,2) and (5,0)

$$p_1 = 2$$
, $p_2 = 5$, $m = 20$

- ▶ Now it's a really bad day and the frost occurred and you got a ticket
- $ightharpoonup p'_1 = 5, p_2 = 5, m' = 10$
- New Budget Line: $5x_1 + 5x_2 = 10$
- ightharpoonup New Intercepts: (0,2) and (2,0)

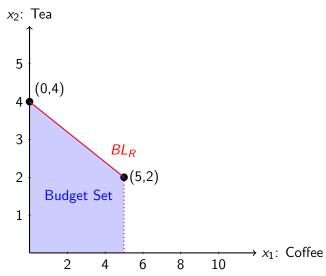
- Many economic policies that governments employ can affect a consumer's budget constraint
- Quantity Tax: Consumers pay a certain amount to the government for each unit of the good purchased
 - ► Gas tax: 30 cents per gallon in Michigan
 - ► Same effect on the budget line as raising prices
 - e.g. Suppose gas costs $p_g=2.50/{\rm gallon}$. But the government imposes a new tax of \$0.50/gallon. The new price becomes $p_g'=3.00/{\rm gallon}$
- ► Value (Ad Valorem) Tax: Consumers pay the government a percentage of the value of the good purchased
 - ► Sales Tax: 6% in Michigan
 - ► Same effect on the budget line as raising prices
 - e.g. In Florida, there are sales tax holidays. Suppose a backpack there costs $p_b = 20$ during the holiday. But on a non-holiday, it is subjected to a 6% tax. The new cost is $p_b' = 1.06p_b = 21.20$

- Quantity Subsidy: Governments give an amount to consumers based on how many units of a good are purchased
 - Agricultural industry: corn, wheat, soybean, etc
 - ► Has the same effect on the budget line as decreasing prices
 - ▶ e.g. Suppose your internet costs $p_i = 70/\text{month}$. But, you now qualify for the ACP and its subsidy of \$30. The new cost is $p'_i = 40$
- ► Value (Ad Valorem) Subsidy: Governments give consumers a percentage of the value of the good purchased
 - ► ACA, small business, and solar power subsidies
 - Same effect on the budget line as decreasing prices
 - ▶ e.g. A solar panel costs $p_s = 100$, but the government offers a subsidy of 20% total cost. The new price becomes $p'_s = .80p_s = 80$
- ► Taxes and subsidies affect the budget line in the same way, but have opposite effects

- ► Lump Sum Taxes (Subsidies): The government will take (give) a fixed amount of money to a consumer, regardless of purchase behavior.
 - Car registrations (tax) or stimulus checks (subsidy)
 - ► Same thing as a reduction (increase) in income
 - ► The budget line will shift inward (outward)
 - ▶ e.g. Suppose you have an income of m = \$30,000 and the government decides to give out stimulus checks worth \$1,500 to all adults who made less than \$80,000 last year. Then your income becomes m' = \$31,500
- Quantity and Value taxes/subsidies tilt the budget line while lump sum shifts it

- ► Rationing: Consumption of some good cannot exceed a certain amount
 - e.g. WWII (butter, meat), hurricane season (water, flashlights, gas),
 Covid (toilet paper, cleaning supplies)
 - ► Causes a vertical or horizontal cut off on the budget line
- ► Kinked Budget Line: Occurs when the price of a good changes after a certain amount is bought

Example: Rationing


Budget Line:
$$2x_1 + 5x_2 = 20$$

- ► It's finals week and MSU has convinced all local coffee shops to limit customers to five coffees. All prices and income remain the same
- ▶ Before the rationing, the maximum amount of coffees we could buy was 10: (10,0)
- ▶ Now the maximum amount of coffees we are allowed to buy is 5
- If we buy 5 coffees, we have enough money left to buy 2 teas $2(5) + 5x_2 = 20$ $x_2 = 2$
- \blacktriangleright (5,2) is our new end point
- \blacktriangleright (0,4) is still our x_2 intercept

Example: Rationing

*Rationed to 5 coffees

How to Graph a Rationed Budget Line

- 1. Identify which good(s) is being rationed and at what amount
- 2. Write down the budget line
- 3. Plug in the maximum amount you are allowed to buy of the rationed good
- 4. Solve for the remaining variable
 - This amount and the maximum of the rationed good will be your endpoint
- Now plug in 0 for the rationed good in the budget line and solve for the non-rationed good
 - ► This will be your intercept
- 6. Connect these two points
- 7. Draw a dashed line from the endpoint to the axis that does not have an intercept

Example: Kinked Budget Line

$$2x_1 + 5x_2 = 20$$

- ▶ It's finals week, but now instead of rationing coffee, MSU has convinced all local coffee shops to charge an extra \$2 for every coffee bought after the fifth one.
- ▶ This change in p_1 applies only to quantities purchased after 5

$$p_1 = 2 \text{ for } 0 \le x_1 \le 5$$

 $p'_1 = 4 \text{ for } 5 < x_1$

Kink point:

$$2(5) + 5x_2 = 20$$
 (Price changes at $x_1 = 5$)
 $x_2 = 2$ (Simplify)
Kink Point: $(5,2)$

Example: Kinked Budget Line

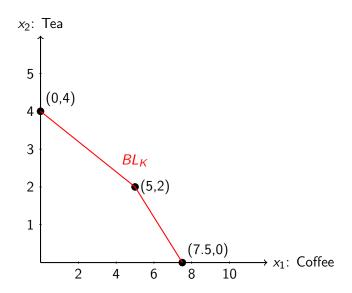
Intercept with original prices:

$$2(0) + 5x_2 = 20$$
 (Plug 0 in for the good that changes price) $x_2 = 4$ (Simplify) Intercept: $(0,4)$

Intercept with new prices:

```
2 \cdot 5 = 10 (Total cost of coffee before price change)

4x_1 + 5x_2 = 20 - 10 (subtract 10 from income)


4x_1 + 5(0) = 10 (Plug 0 in for the good that doesn't change price)

x_1 = 2.5 (Simplify)

x_1 = 2.5 + 5 = 5.5 (Add the quantity where it changes)

Intercept: (7.5,0)
```

Example: Kinked Budget Line

How to Graph a Kinked Budget Line

- 1. Identify which good(s) changes price and at what quantity
- 2. Write down the budget line with the prices before the change
- 3. Plug in the amount of the good you can buy before it changes price
- 4. Solve for the good whose price doesn't change
 - ► This is your kink point
- 5. Rewrite the budget line with the prices before the change
- 6. Plug in 0 for the good whose price changes
- 7. Solve for the good whose prices doesn't change
 - This is one of the intercepts

How to Graph a Kinked Budget Line

- 8. Rewrite the budget line with the prices after the change
- Multiply the maximum you can buy of the price changing good before the price changes by the original price of the good
- 10. Subtract that amount from the income
- 11. Plug in 0 for the good whose price doesn't change
- 12. Solve for the good whose price does change
- 13. Add the amount we could buy before the price change to quantity solved for
 - ► This is the other intercept

Why Only Two Goods?

- ► So far, we've only discussed decisions made between two goods
- ▶ But that is often unrealistic
- We can think of one good as a specific good and the other as representing all other possible goods
 - ► Composite Good: Everything else a person might consume other than good 1
- ► This is a special case ONLY for when we are talking about more than two goods
- In this class, we will assume two goods are enough and leave composite goods to advanced classes.